Detection of uracil within DNA using a sensitive labeling method for in vitro and cellular applications.
نویسندگان
چکیده
The role of uracil in genomic DNA has been recently re-evaluated. It is now widely accepted to be a physiologically important DNA element in diverse systems from specific phages to antibody maturation and Drosophila development. Further relevant investigations would largely benefit from a novel reliable and fast method to gain quantitative and qualitative information on uracil levels in DNA both in vitro and in situ, especially since current techniques does not allow in situ cellular detection. Here, starting from a catalytically inactive uracil-DNA glycosylase protein, we have designed several uracil sensor fusion proteins. The designed constructs can be applied as molecular recognition tools that can be detected with conventional antibodies in dot-blot applications and may also serve as in situ uracil-DNA sensors in cellular techniques. Our method is verified on numerous prokaryotic and eukaryotic cellular systems. The method is easy to use and can be applied in a high-throughput manner. It does not require expensive equipment or complex know-how, facilitating its easy implementation in any basic molecular biology laboratory. Elevated genomic uracil levels from cells of diverse genetic backgrounds and/or treated with different drugs can be demonstrated also in situ, within the cell.
منابع مشابه
Application of Rapid and Sensitive Real Time PCR Technique in Detection of DNA Impurities in Recombinant Interferon
Background & Objective: Interferon belongs to a family of cytokines, which has the most important role in the innate immune response to virus infections. While producing recombinant interferon in biological host, some pieces of host nucleic acids remain in product. Because of limitations in previous techniques for detection of these impurities, the objective of this study is to use rapid ...
متن کاملTrack detection on the cells exposed to high LET heavy-ions by CR-39 plastic and terminal deoxynucleotidyl transferase (TdT)
Background: The fatal effect of ionizing radiation on cells depends on Linear Energy Transfer (LET) level. The distribution of ionizing radiation is sparse and homogeneous for low LET radiations such as X or γ, but it is dense and concentrated for high LET radiation such as heavy-ions radiation. Material and Methods: Chinese hamster ovary cells (CHO-K1) were exposed to 4 Gy Fe-ion 2000 keV/...
متن کاملOptimization of PCR-ELISA in Detection of Human Cytomegalovirus Infection
Abstract Background and Objective: Human Cytomegalovirus (CMV) is an important cause of congenital viral infection that can lead to serious diseases and complications in infants. Application of rapid, sensitive, and specific HCMV detection methods is necessary for congenital infection detection. We aimed to optimize the use of PCR and ELISA for detection of HCMV in infants. Material and Methods...
متن کاملDesign of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study
The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...
متن کاملPetra, osiris and molinspiration: A computational bioinformatic platform for experimental in vitro antibacterial activity of annulated uracil derivatives
Annulated pyrano[2,3-d]pyrimidine/pyrano[2,3-d]uracil derivatives were synthesized using aromatic aldehydes, active methylene compounds and barbituric acid in presence of dibutylamine (DBA) catalyst in ethanol as solvent. The different substituents on phenyl ring in the fused pyrano uracil skeleton showed productive influence on its antimicrobial activity against some gram positive and gram neg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 44 3 شماره
صفحات -
تاریخ انتشار 2016